资源类型

期刊论文 27

会议视频 1

年份

2023 3

2022 7

2021 1

2020 2

2019 1

2018 1

2015 1

2014 1

2013 1

2011 2

2008 2

2006 1

2005 1

2001 1

2000 1

1999 1

展开 ︾

关键词

半导体 3

2035 1

DVD 1

先进半导体材料 1

光电子 1

半导体可靠性 1

半导体工业 1

半导体激光器,光泵浦垂直外腔面发射激光器,纳米激光器,拓扑绝缘体激光器 1

半导体硅片;8 in;12 in;产业协同;先进制程 1

半导体纳米晶体;突触器件;神经形态计算 1

塞贝克系数 1

多晶硅 1

废气 1

废水 1

微机电系统(MEMS) 1

气体传感器;化学式电阻器;模板法;纳米结构;维度 1

污染 1

治理 1

温差发电 1

展开 ︾

检索范围:

排序: 展示方式:

Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 433-442 doi: 10.1007/s11705-021-2066-6

摘要: Copper(I) selenide-nanocrystalline semiconductor was synthesized via one-step mechanochemical synthesis after 5 min milling in a planetary ball mill. The kinetics of synthesis was followed by X-ray powder diffraction analysis and specific surface area measurements of milled 2Cu/Se mixtures. The X-ray diffraction confirmed the orthorhombic crystal structure of Cu2Se with the crystallite size ~25 nm. The surface chemical structure was studied by X-ray photoelectron spectroscopy, whereby the binding energy of the Cu 2p and Se 3d signals corresponded to Cu+ and Se2– oxidation states. Transmission electron microscopy revealed agglomerated nanocrystals and confirmed their orthorhombic structure, as well. The optical properties were studied utilizing ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The direct bandgap energy 3.7 eV indicated a blue-shift phenomenon due to the quantum size effect. This type of Cu2Se synthesis can be easily adapted to production dimensions using an industrial vibratory mill. The advantages of mechanochemical synthesis represent the potential for inexpensive, environmentally-friendly, and waste-free manufacturing of Cu2Se.

关键词: Cu2Se     berzelianite     nanocrystalline semiconductor     mechanochemical synthesis     planetary ball mill    

Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water

《能源前沿(英文)》 2022年 第16卷 第1期   页码 49-63 doi: 10.1007/s11708-022-0817-9

摘要: Solar energy-driven photocatalytic water splitting has been investigated for decades to produce clean and renewable green hydrogen. In this paper, the cutting-edge research within the overall water splitting system is summarized from the one-step photocatalytic overall water splitting (POWS) system to the two-step system and the cocatalysts research in this field. In addition, the photocatalytic reaction engineering study is also reviewed which is crucial for future scale-up. This mini-review provides a picture of survey of recent progress of relevant overall water splitting system, with particular attention paid to material system and mechanistic breakthroughs, and highlights the challenge and opportunity of the current system.

关键词: photocatalysis     overall water splitting     hydrogen    

Theoretical analysis of novel weak current sensor using FeCuNbSiB single nanocrystalline toroidal core

BAO Bing-hao, ZHU Da-qi, DING Jian-ning, LI Chang-sheng

《机械工程前沿(英文)》 2006年 第1卷 第4期   页码 439-442 doi: 10.1007/s11465-006-0054-7

摘要: An FeCuNbSiB nanocrystalline toroidal core made by isothermal furnace annealing shows good thermal stability of magnetic properties and excellent soft magnetic properties due to the full release of the internal stresses of the core during the annealing process. Based on the feature of the magnetic core, a novel non-contact type weak current sensor adopting single nanocrystalline core and double-winding excited by multivibrator bridge is proposed. The measuring principles for static current are given in theory by an established mathematical model of the sensor. The theory is in good agreement with the experimental results and it indicated clearly the key factors affecting performance parameters for the sensor. The multivibrator bridge output signal was analyzed by Fourier transform. Furthermore, according to the theoretical results, the method to design the signal conditioning circuit was introduced.

关键词: measuring     mathematical     Furthermore     transform     FeCuNbSiB nanocrystalline    

Liquid metal printing opening the way for energy conservation in semiconductor manufacturing industry

《能源前沿(英文)》 2022年 第16卷 第4期   页码 542-547 doi: 10.1007/s11708-022-0834-8

中国先进半导体材料及辅助材料发展战略研究

“先进半导体材料及辅助材料”编写组

《中国工程科学》 2020年 第22卷 第5期   页码 10-19 doi: 10.15302/J-SSCAE-2020.05.002

摘要:

目前,以SiC、GaN为代表的第三代半导体材料快速发展,我国亟需抓住战略机遇期,实现先进半导体材料、辅助材料的自主可控,保障相关工业体系安全。本文在分析全球半导体材料及辅助材料研发与产业发展现状的基础上,寻找差距,结合我国现实情况,提出了构建半导体材料及辅助材料体系化发展、上下游协同发展和可持续发展的发展思路,制定了面向2025年和2035年的发展目标。为推动我国先进半导体材料及辅助材料产业发展,提出了建设集成电路关键材料及装备自主可控工程,SiC和GaN半导体材料、辅助材料、工艺及装备验证平台,先进半导体材料在第五代移动通信技术、能源互联网及新能源汽车领域的应用示范工程,并对如何开展三项工程进行了需求分析,设置了具体的工程目标和工程任务。最后,为推动半导体产业的创新发展,从坚持政策推动,企业和机构主导,整合国内优势资源;把握“超越摩尔”的历史机遇,布局下一代集成电路技术;构建创新链,进行创新生态建设等方面提出了对策建议。

关键词: 先进半导体材料     辅助材料     第三代半导体     2035    

Computation model for corrosion resistance of nanocrystalline zircaloy-4

ZHANG Xiyan, ZHU Yutao, LIU Qing, LUAN Baifeng, HUANG Guangjie, LI Cong, ZHANG Xiyan, SHI Minghua, LIU Nianfu, ZHANG Xiyan, LI Cong

《能源前沿(英文)》 2008年 第2卷 第4期   页码 386-389 doi: 10.1007/s11708-008-0102-6

摘要: A computation model of the corrosion rate versus grain size of nanocrystalline zircaloy-4 was presented. The influence of the second phase on the conductivity of alloy was considered. By this model, the corrosion rate of nanocrystalline zircaloy-4 at different temperature was calculated. The results show that the corrosion rate constant and weight gain of nanocrystalline zircaloy-4 decrease with the decrease of grain size, and that the corrosion weight gain of nanocrystalline zircaloy-4 is less than that of zircaloy-4 of coarse grain. The computational result is coincident with the experimental result.

关键词: corrosion     constant     corrosion weight     weight     influence    

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 595-600 doi: 10.1007/s11708-022-0827-7

摘要: Nickel selenide electrocatalysts for hydrogen evolution reaction (HER) with a high efficiency and a low-cost have a significant potential in the development of water splitting. However, the inferiority of the high overpotential and poor stability restricts their practical applications. Herein, a composite nanostructure consists of ultrasmall NiSe2 nanocrystals embedded on graphene by microwave reaction is reported. The prepared NiSe2/reduced graphite oxide (rGO) electrocatalyst exhibited a high HER activity with an overpotential of 158 mV at a current density of 10 mA/cm2 and a corresponding moderate Tafel slope of 56 mV/dec in alkaline electrolyte. In addition, a high retention of electrochemical properties (approximately 100%) was demonstrated with an unchangeable microstructure after 100 h of continuous operation.

关键词: nickel selenide     carbon materials     nanoparticles     hydrogen evolution reaction (HER)     microwave reaction    

Novel slack-based robust scheduling rule for a semiconductor manufacturing system with uncertain processing

Juan LIU, Fei QIAO, Yumin MA, Weichang KONG

《工程管理前沿(英文)》 2018年 第5卷 第4期   页码 507-514 doi: 10.15302/J-FEM-2018045

摘要:

The NP-hard scheduling problems of semiconductor manufacturing systems (SMSs) are further complicated by stochastic uncertainties. Reactive scheduling is a common dynamic scheduling approach where the scheduling scheme is refreshed in response to real-time uncertainties. The scheduling scheme is overly sensitive to the emergence of uncertainties because the optimization of performance (such as minimum make-span) and the system robustness cannot be achieved simultaneously by conventional reactive scheduling methods. To improve the robustness of the scheduling scheme, we propose a novel slack-based robust scheduling rule (SR) based on the analysis of robustness measurement for SMS with uncertain processing time. The decision in the SR is made in real time given the robustness. The proposed SR is verified under different scenarios, and the results are compared with the existing heuristic rules. Simulation results show that the proposed SR can effectively improve the robustness of the scheduling scheme with a slight performance loss.

关键词: semiconductor manufacturing system     uncertain processing time     dynamic scheduling     slack-based robust scheduling rule    

Developments in semiconductor thermoelectric materials

Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 125-136 doi: 10.1007/s11708-011-0150-1

摘要: A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

关键词: thermoelectric materials     thermoelectric figure of merit     applications    

Comparison study on strategies to prepare nanocrystalline Li

Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 297-302 doi: 10.1007/s11705-013-1346-1

摘要: A comparison study has been conducted on the strategies for synthesizing nanocrystalline Li ZrO and K-doped Li ZrO absorbents for CO capture at high temperatures, including solid-state and liquid-phase methods, citrate route, and starch-assisted sol-gel method combined with freeze-drying technique. The absorption properties, including uptake rate and absorption capacity, of synthesized absorbents were investigated by thermogravimetric analysis (TGA) at different CO partial pressures. The nanosized Li ZrO crystals synthesized by the citrate route exhibit a faster uptake and a higher, nearly stoichiometric absorption capacity than those synthesized by the solid-state and liquid-phase methods. The doping of K into Li ZrO can significantly improve the uptake rate of CO , especially at low CO partial pressures. For the synthesis of K-doped Li ZrO , the citrate route has poor reproducibility and scalability, whereas the starch-assisted sol-gel method combined with freeze-drying technique is reproducible and easily scaled up, and the thus synthesized absorbents possess excellent CO capture properties.

关键词: CO2 capture     Li2ZrO3     K-doped Li2ZrO3     citrate     starch     freeze-drying technique    

Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward

《能源前沿(英文)》 doi: 10.1007/s11708-023-0881-9

摘要: Sunlight-powered water splitting presents a promising strategy for converting intermittent and virtually unlimited solar energy into energy-dense and storable green hydrogen. Since the pioneering discovery by Honda and Fujishima, considerable efforts have been made in this research area. Among various materials developed, Ga(X)N/Si (X = In, Ge, Mg, etc.) nanoarchitecture has emerged as a disruptive semiconductor platform to split water toward hydrogen by sunlight. This paper introduces the characteristics, properties, and growth/synthesis/fabrication methods of Ga(X)N/Si nanoarchitecture, primarily focusing on explaining the suitability as an ideal platform for sunlight-powered water splitting toward green hydrogen fuel. In addition, it exclusively summarizes the recent progress and development of Ga(X)N/Si nanoarchitecture for photocatalytic and photoelectrochemical water splitting. Moreover, it describes the challenges and prospects of artificial photosynthesis integrated device and system using Ga(X)N/Si nanoarchitectures for solar water splitting toward hydrogen.

关键词: Ga(X)N/Si nanoarchitecture     artificial photosynthesis     water splitting     solar toward hydrogen    

Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 176-181 doi: 10.1007/s11465-011-0220-4

摘要:

High-energy ball milling is an effective method to produce nanocrystalline oxides. In this study, a conventional ZrO2-7%Y2O3spray powder was ball-milled to produce nanocrystalline powders with high levels of crystalline disorders for deposition of thermal barrier coatings. The powder was milled both with 100Cr6 steel balls and with ZrO2-3%Y2O3 ceramic balls as grinding media. The milling time was varied in order to investigate the effect of the milling time on the crystallite size. The powders were investigated in terms of their crystallite sizes and morphologies by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that under given milling conditions the powder was already nanostructured after 40 min milling. The crystallite size decreased significantly with increasing milling time within first 120 min. After that, a further increase of milling time did not lead to a significant reduction of the crystallite size. Ball-milling led to lattice microstrains. Milling with the steel balls resulted in finer nano-sized crystal grains, but caused the contamination of the powder. The nano-sized crystal grains coarsened during the heat-treatment at 1250°C.

关键词: nanostrucured powders     yttria stabilized zirconia (YSZ)     high-energy ball milling     thermal barrier coatings    

我国半导体硅片发展现状与展望

张果虎,肖清华,马飞

《中国工程科学》 2023年 第25卷 第1期   页码 68-78 doi: 10.15302/J-SSCAE-2023.01.002

摘要:

硅片是半导体关键的基础材料,我国半导体硅片对外依存度较高,增强硅片的自主保障能力,对提升我国半导体产业整体水平至关重要。本文重点围绕市场主流的8 in、12 in硅片,分析了全球半导体硅片的技术和产业发展现状,研判了全球半导体硅片产业未来的发展趋势,重点分析了我国半导体硅片的发展现状,指出我国半导体硅片在当前市场需求、宏观政策、配套能力、研发投入等利好因素下迎来难得的发展机遇,同时提出我国半导体硅片产业发展面临挑战,在此基础上,从进一步加强顶层设计和宏观规划、强化政策落实和政策持续性、协调支持产业链协同发展、布局研发集成电路先进制程用半导体硅片等方面提出对策建议,以期为推动我国半导体硅片向更高质量发展提供参考。

关键词: 半导体硅片;8 in;12 in;产业协同;先进制程    

受疫情影响的半导体供应链危机

Mitch Leslie

《工程(英文)》 2022年 第9卷 第2期   页码 10-12 doi: 10.1016/j.eng.2021.12.006

Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial

Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 164-170 doi: 10.1007/s11705-018-1755-2

摘要:

Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.

关键词: copper sulfide     industrial mechanochemical synthesis     thermal analysis     optical properties    

标题 作者 时间 类型 操作

Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

期刊论文

Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water

期刊论文

Theoretical analysis of novel weak current sensor using FeCuNbSiB single nanocrystalline toroidal core

BAO Bing-hao, ZHU Da-qi, DING Jian-ning, LI Chang-sheng

期刊论文

Liquid metal printing opening the way for energy conservation in semiconductor manufacturing industry

期刊论文

中国先进半导体材料及辅助材料发展战略研究

“先进半导体材料及辅助材料”编写组

期刊论文

Computation model for corrosion resistance of nanocrystalline zircaloy-4

ZHANG Xiyan, ZHU Yutao, LIU Qing, LUAN Baifeng, HUANG Guangjie, LI Cong, ZHANG Xiyan, SHI Minghua, LIU Nianfu, ZHANG Xiyan, LI Cong

期刊论文

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

期刊论文

Novel slack-based robust scheduling rule for a semiconductor manufacturing system with uncertain processing

Juan LIU, Fei QIAO, Yumin MA, Weichang KONG

期刊论文

Developments in semiconductor thermoelectric materials

Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG

期刊论文

Comparison study on strategies to prepare nanocrystalline Li

Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU

期刊论文

Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward

期刊论文

Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA

期刊论文

我国半导体硅片发展现状与展望

张果虎,肖清华,马飞

期刊论文

受疫情影响的半导体供应链危机

Mitch Leslie

期刊论文

Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial

Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono

期刊论文